الفصل األول : مفاهيم أساسية حول علم اإلحصاء األساتذة: العشي هارون و بوراس فايزة تعريف اإلحصاء: هو مجموعة الطرق العلمية التي تسمح بجمع البيانات المتعلق
|
|
- تاليا المظفر
- منذ 5 سنوات سابقة
- المشاهدات:
النسخ
1 الفصل األول : مفاهيم أساسية حول علم اإلحصاء تعريف اإلحصاء: هو مجموعة الطرق العلمية التي تسمح بجمع البيانات المتعلقة بظاهرة معينة وتبوبيها في جداول إحصائية وعرضها في صورة أشكال بيانية وتحليلها باستخدام مقاييس النزعة المركزية ومقاييس التشتت وغيرها من المقاييس األخرى أوال : السلسلة اإلحصائية ذات متغير واحد І مفاهيم ومصطلحات: المجتمع: هي كل المفردات أو العناصر الم ارد د ارستها مثال: مجموعة من الطلبة 2 العينة: هي مجموعة جزئية من المجتمع محل الد ارسة الوحدة اإلحصائية: هي الوحدة األساسية التي يتكون منها المجتمع اإلحصائي الميزة: هي الخاصية التي يرغب الباحث في د ارستها )أو هي القاسم المشترك بين عناصر المجموعة( مثال: الطول بالنسبة لمجموعة من الطلبة *أنواع الميزة: عندما تأخذ الميزة قيما عددية )تكون قابلة للقياس( عندها نكون بصدد متغير كمي وهذا األخير يمكنه أن يكون منقطعا أو مستم ار ميزة كمية قابلة للقياس ترفق ب: متغير كمي منقطع مستمر *عندما ال تأخذ الميزة قيما عددية )تكون غير قابلة للقياس( نكون بصدد ميزة نوعية بالتالي متغير نوعي ميزة نوعية غير قابلة للقياس ترفق ب: متغير نوعي الكيفيات: هي الحاالت الممكنة للميزة المتغير اإلحصائي: يوضح مختلف القيم التي يمكن أن تأخذها الميزة ويرمز له ب ال أو نعمالخ وهو نوعان المتغير اإلحصائي المنقطع والمتغير اإلحصائي المستمر ІІ الجدول اإلحصائي: الميزة نوعية هي إحدى وسائل تصنيف أو تبويب البيانات اإلحصائية إذا كانت
2 الفصل األول : مفاهيم أساسية حول علم اإلحصاء N= n +n 2 n n كتابة الجدول اإلحصائي في حالة ميزة نوعية بحيث ni n n 2 n n N G m m 2 m n x, x 2,, x n كتابة جدول إحصائي في حالة ميزة كمية x حالة x متقطع: ليكن متغير إحصائي متقطع بحيث هي قيم x هي قيم التك ارر المناسبة لقيم n n,n 2,n 2 a المتغير اإلحصائي: يكون الشكل العام للجدول اإلحصائي في حالة متقطع كما يلي بحيث x ni n n 2 n n N X x x 2 x n حالة x مستمر:يتم بناء جدول إحصائي بإتباع الخطوات اآلتية: اختيار عدد الفئات k يحسب مدى التوزيعe والذي يساوي تقريبا إلى حيث N: عدد العناصر الفرق بين أكبر قيمة وأصغر قيمة في التوزيع b 2 حيث: e=e N e يحسب طول الفئة حيث c i = e +e 2 حساب م اركز الفئات حيث: 2
3 الفصل األول : مفاهيم أساسية حول علم اإلحصاء ci c c 2 c n / ni n n 2 n n N X ]e e ] ]e 2 e ] ]e n e n ] ІІІ الشكل البياني: ميزة نوعية: القطع الدائرية:حيث تتناسب قيم التك ارر ومقدار ال ازوية طرديا تناسبا n i a حيث: x مثال: = المهنة Ni 2 x ,,2,,2, 2 نجار حداد رصاص لحام بناء
4 الفصل األول : مفاهيم أساسية حول علم اإلحصاء :c b :األعمدة المستطيلة : العمود المج أز : 2 المهنة 2 ميزة كمية : : يكون الشكل البياني في حالة X متقطع عبارة عن اعمدة بيانية يتم تمثيلها x متقطع :a n i كما يلي : 2 2 ni x I مثال : x i خاصة األعمدة البيانية يوجد تناسب طردي بين قيمة التك ارر n i وطول العمود li xb مستمر b المدرج التك ارري : *حالة تساوي طول الفئات : مثال :
5 الفصل األول : مفاهيم أساسية حول علم اإلحصاء ai n i e i 7, 8, 28,2 8 [ [ [ [ [ [ [ [ / 9 [[ *حالة تساوي طول الفئات : مثال : ai n i e i 8 [ [ [8 [8 [ [ [ [ [8[ Ai خاصة المدرج التك ارري يوجد تناسي طردي بين قيمة التك ارر ومساحة ni المستطيل
6 الفصل األول : مفاهيم أساسية حول علم اإلحصاء المضلع التك ارري : مثال : ai ci n i e i [[ [8 [ [8 [ [ [ [[ [[ [[ / 2 ci مالحظة : يمكن رسم المضلع التك ارري انطالق من المدرج التك ارري وذلك م اركز بإيصال يبعضها الفئات البعض مع إضافة مركز الفئة ف و الفئة فn+
7 الفصل األول : مفاهيم أساسية حول علم اإلحصاء المتجمع التك ارر التك ارر المتجمع الصاعد والنازل حالة متقطع X X X X I مثال : xi n i x i x مالحظة : في حالة متقطع قيم وقيم ال تكتب في نفس الخط 7
8 الفصل األول : مفاهيم أساسية حول علم اإلحصاء x مستمر: X e i r e I ei f i e i [[ [[ [8[ [8[ [[ 8
9 الفصل الثاني : مقياس النزعة المركزية الموضع إن تلخيص البيانات العددية في جداول لهذه إحصائية وعرضها في صورة أشكال بيانية يعطي الباحث وصف عام وسريع حول الظاهرة المدروسة غير أن لهذه الطريقة حدود ونذكر ال يمكن استخدامها في تحليل المعطيات ال يمكن االستفادة منها في التنبؤ واتخاذ الق ارر األسباب وضعت مقياس عددية وصفية تستخدم في التحليل والتنبؤ و اتخاذ الق ارر تسمى ب : مقياس النزعة المركزية والموضوع مفهوم النزعة المركزية يعني ميل مفردات أي ظاهرة من ظواهر إلى الت اركم حول قيمة متوسطة ( وسيطة ) قم يقل الت اركم حول القيمة المتوسطة كلما ابتعدنا إلى جانبين المنوال : هو قيمة التي x من القيم او قد يكون لها أكثر من منوال أ حالة البيانات غير المبوبة : منها يقابلها اكبر تك ارر مالحظة : قد ال يوجد منوال لمجموعة 2 2 مثال : إدا أعطيت لك القيم اآلتية : نالحظ انه ال يجود منوال لهذه القيم ألنها تكررت بنفس الم ارتب مثال 2: يوجد ذا كانت لديك القيم اآلتية : أكثر من منوال لهذه القيم 2 2 مثال : إذا توفرت لديك المعطيات اآلتية : Mo ss يوجد منوال وجيد لهذه القيم : حالة البيانات المئوية : (:حالة x متقطع 9
10 الفصل الثاني : مقياس النزعة المركزية الموضع مثال : منوال x هو قيمة من قيم x i التي لها أكبر تك ارر إذن : Mox= ni 2 2 X i 2 :)2 حالة X مستمرة : n i الفئة المنوالية : هي الفئة التي لها تك ارر : ( حالة طول الفئات متساوي ) نم أما في حالة عدم تساوي طول الفئات فإن الفئة المنوالية هي الفئة التي لها اكبر تك ارر معدل a حالة تساوي طول الفئات : الفئة المنوالية هي الفئة ]] n i عدد المؤسسات 2 2 XI األرقم األعمال DA [ [ [ [ [ [ [8 [ [8[ b: حالة عدم تساوي طول الفئات : ai % f i األجرDA Xi الفئة المنوالية هي الفئة] 2 ] / / 2 2 [2 [ [2 [ [ [ [ [ [[
11 الفصل الثاني : مقياس النزعة المركزية الموضع الوسط الحسابي : هو يمثل مجموعة قيم مفردات المجموعة على عددها 2 الوسط الحسابي البسيط : يستخدم في حالة البيانات غير المبوبة / I مثال : إذا كانت أو ازن مجموعة طلبة على التوالي :,7,9,7,7,kg فإن الحسابي ألو ازنهم : أي أن : / II الوسط الحسابي المرجح: ادخل الترجيح في عالقة الوسط الحسابي في نظ ار الختالف أهمية قياسات المتغير اإلحصائي من قيمة ألخرى والترجيح له أهمية ووزن قياس معين مكن قياسات المتغير اإلحصائي ويعطي بالعالقة : حالة X منقطع أ/ الطريقة المباشرة :
12 الفصل الثاني : مقياس النزعة المركزية الموضع مثال : n i x i n i x i ب/ طريقة الوسط الفرضي: )الطريقة المختصرة ) : مثال X قيمة في منتصف المجموعة تمثل منوال : A حيث 2 I A =2, Y I =X =2 2 2 ai 2 2 n i 2 e i 2 / 8 مستمر حالة X : تعطي عبارة الوسط الحسابي في حالة بالعالقة : 2 2
13 الفصل الثاني : مقياس النزعة المركزية الموضع أ الطريقة المباشرة : ai ci n i األجرDA Xi = 8 8 / / 8 / / 8 [ [ [ [ [ [ [ [ ][ ب/ الطريقة المختصرة : )الطريقة البسيطة ) : : تمثل م اركز الفئات ci في حالة تساوي مدى الفئات وفي حالة اختالف مدى الفئات التي تأخذ a: مدى الفئات ( المدى األكثر تك ارر ) b: يمثل مركز الفئة المنوالية =27 DA خصائص الوسط الحسابي : يستعمل الوسط الحسابي في المتغي ارت الكمية القابلة للقياس أي
14 الفصل الثاني : مقياس النزعة المركزية الموضع 2 ال يمكن أن يكون أكثر من وسط حسابي ألي توزيع تك ارري وال يمكن أن يكون قيمة مشاهدة إال ناد ار الوسط الحسابي هو متوسط لقيم المجموعة متوسط لم ارتب المجموعة مجموع انح ارفات قيم المتغير اإلحصائي عن وسطها الحسابي ويساوي الصفر ( أي أن الوسط الحسابي يتأثر المتطرقة ) n(x i n i X i )= )= ال يمكن حساب الوسط الحسابي في الجداول التك اررية المفتوحة إال بالطريقة غير مباشرة أي باستخدام العالقة التجريبية بين الوسط والوسيط والمنوال : الوسيط : هو القسيمة التي تقع في منتصف البيانات المرتبة ترتيبا تصاعديا أو تنازليا / I حالة البيانات غير المبوبة : *عدد المفردات فردي : 7,7,,78, رتبة الوسيط هي = بعد ترتيب المفردات :7,78;,,7 Mex= عدد المفردات زوجي : 7,7,78 ; 7,7,78
15 الفصل الثاني : مقياس النزعة المركزية الموضع,7,7,7,7,78 Mex=,= رتبة الوسيط : حالة البيانات المبوبة x : هي قيمة التي تقسم المجموعة قسمين متساويين إلى / II متقطع: X لحساب الوسيط حساب Mex حساب واستخ ارج قيمة مالحظة : إذا كانت قيمة تقع مات بين فإن قيمة الوسيط تكون معينة كانت قيمة إذا تساوي أحد قيم فإن قيمة الوسيط تكون مجال مثال : X i n i X i 2 2
16 الفصل الثاني : مقياس النزعة المركزية الموضع 8 X i n i X i *حالة x مستمر: مثال: رتبة الوسيط : 8 7 fcj9 fcj + fcj fcj c ej ej + 2 n i X i [ 2 8 [ [[ [[ [[ [[ ][ أيضا *يمكن حساب الوسيط باستعمال التك ارر المجتمع النازل
17 ال الفصل الثاني : مقياس النزعة المركزية الموضع القانون هو : = خصائص الوسيط : يقسم المجموعة إلى قسمين متساويين يتأثر بالقيم المتطرقة ( الحدية كما في حالة الوسيط الحسابي ) الخ يستعمل الوسيط في عدة مجاالت نذكر منها : األجور واألسعار المقاييس الشبيهة بالوسيط ( مقاييس الموضع ) : 2,,,,,7,8 حالة البيانات غير المبوبة مثال : لتكن القيم التالية : الربيعيات : لديهم اقل من غ %2 لديهم أكثر من غ %7 لديهم اقل من غ % % لديهم أكثر من غ 7
18 الفصل الثاني : مقياس النزعة المركزية الموضع لديهم أقل من غ %7 لديهم أكثر من غ %2 العشيريات : المئينات حالة البيانات المبوبة : حالة متقطع X حالة : تعالج هذه الحالة بنفس الطريقة المتبعة في حساب الوسيط ( X الموافق في متقطع ) يفارق وحيد هو استبدال رتبة الوسيط برتبة الربيع او العشير او المئين 8
19 الفصل الثاني : مقياس النزعة المركزية الموضع مثال : X i n i X i 2 الربيعيات : العشيريات : المئينات : 9
20 الفصل الثاني : مقياس النزعة المركزية الموضع حالة X مستمر : نستخدم العالقة المبرهن عليها في حساب الوسيط مع استبدال رتبة الوسيط برتبة الربيع أو العشير أو المئين الموافق الربيعيات : مثال : العشيريات : مثال المئينات : الوسط الهندسي: حالة البيانات غير المبوبة: مثال: 2
21 الفصل الثاني : مقياس النزعة المركزية الموضع حالة بيانات مبوبة : مثال: / 7 7, / 82 =, G=2, 2 مالحظة يتم حساب الوسط في حالة الهندسي مع استبدال الطريقة بنفس مستتمر x بم اركز الفئات 2 الوسط التوافقي : حالة البيانات المبوبة حالة البيانات غير المبوبة : الوسيط التربيعي : حالة البيانات غير المبوبة حالة البيانات المبوبة 2
22 الفصل الثاني : مقياس النزعة المركزية الموضع بصفة عامة دوما كيفية اختبار مقاييس النزعة المركزية : الوسيط : يستعمل بحالة التوزيعات التك اررية المفتوحة في حالة األجور التي تنقسم المجتمع إلى قسمين المنوال : لمعرفة باألغلبية عند إنتاج األحذية فالمنتج يقوم إلنتاج القياس األكثر استعماال أو أثناء االنتخابات الوسط الحسابي : عند استي ارد أو إنتاج مادة استهالكية أساسية ببحث عن متوسط الكمية المستوردة أو المنتجة ) ( والعالقة بين الوسيط الحالي الوسيط المنوال : التوزيع التك ارري يكون متماثل ( متناظر ) : موجب االلتواء ( غير متناظر من اليمين ) ( مائل إلى ) )2 اليمين ) 22
23 الفصل الثاني : مقياس النزعة المركزية الموضع سالب االلتواء ( غير متناظر من اليسار( )مائل إلى اليسار( ) 2
24 الفصل الثالث : مقايس التشتت تبين مقاييس النزعة المركزية القيمة المتوسطة للتوزيع اإلحصائي دون أن تظهر كيفية توزيع او انتشار قيم المتغير اإلحصائي حول هذه القيمة هذا ما يؤدي بنا إلى التطرف لمقياس التشتت تعريف التشتت : يقصد بالتشتت مدى تباعد قيم المتغير اإلحصائي عن بعضها البعض أو عن القيمة المركزية وهي بذلك تعطي لنا فكرة عن مدى تجانس أو تباين القيم أهمية التشتت: يمكن أن تساوي متوسطات األكثر من مجموعة بالتالي يمكن القول بأنها متشابهة ( عند مقارنتها بمقياس النزعة المركزية ) لكنها نجدها مختلفة كغير ( عند مقارنتها بمقياس التشتت ) 8 X i n i x i
25 الفصل الثالث : مقايس التشتت 8 X i n i بالمقارنة باستخدام النزعة المركزية نالحظ أي التوزيعين متشابهين ولم استخدامها مقاييس التشتت نجد ( المدى العام ) أنواع مقايس التشنت : مقاييس التشتت المطلقة: و هي المقاييس التي تقيس مقدار التشتت حول القيمة المركزية للظواهر التي لها نفس وحدة القياس ( األجور ) ( الساحة ) مقاييس التشتت النسبية : وهي المقاييس التي تقيم مقدار التشتت حول القيمة المركزية للظواهر إلي لها وحدات قياس مختلفة مقاييس التشتت المطلقة : 2
26 الفصل الثالث : مقايس التشتت المدى العام : الفرق بين اكبر قيمة واصفر قيمة : خواصه : يستعمل اإلعطاء فكرة سريعة مدى تقارب أو المفردات تباعد يستعمل للمقارنة بين توزيعين إحصائيين أو أكثر ال يمكن حساب المدى بدقة في حالة التوزيعات اإلحصائية المفتوحة من الطرفين بسيط وسهل الحساب المجال الربيعي : وهو عبارة عن الفرق بين الربيع الثالث واألول الخواص : يضع % من الوحدات اإلحصائية يستعمل للمقارنة بين توزيعين إحصائيين أو أكثر استعماالته محدود لكنه أفضل من المدى العام االنح ارف الربيعي : ( نصف المجال الربيعي ) : 2 مثال : السلسة اآلتية توضح مداخيل فرد دج 7,8,9,9,,,2,,, e=7=7 2 DA 2
27 الفصل الثالث : مقايس التشتت مدلول هذه النتيجة : 2 %من القيم تقع في منتصف تساوي دج ) 2 من القيم التي تبعد في المتوسط عن الوسيط هي : 2 دج % )2 % : النسبة بين المجال الربيعي والمدى العام يبين المقياس تشتت من الوحدات حول الوسيط مقارنة العام بالمدى يتميز ب : تشتت لمقياس يستعمل % من الوحدات التي تقع حول القيمة المركزية لنفس التوزيع إذا كان %=R يكون التوزيع متناظر إذا كان %<R يكون التشتت قوي بالنسبة للقيمة المركزية إذا كان R<% يكون التشتت ضعيف بالنسبة للقيمة المركزية المجال الربيعي أن نالحظ يمثل المدى العام من إذن يوجد تشتت نسبي والتوزيع قريب من التماثل االنح ارف المتوسط المطلق : هو البعد المتوسط لقيم المتغير اإلحصائي عن وسطها الحسابي أو أية قيمة مركزية ويعطي بالعبارة 27
28 الفصل الثالث : مقايس التشتت : قد تساوي إلى اوMex أوMox a مثال: نقاط طالب :,2,,,8,9,,,/N=9 =7 تبعد قيم في المتوسط عن وسطها الحسابي ب :, خواصه : يأخذ بعين االعتبار جميع المفردات كما إن قيمته تأخذ في الصفر كلما كبر حجم العينية يعتبر االنح ارف المتوسط المطلق أحسن من سابقية )المدى العام المجال الرئيسي االنح ارف الربيعي ) إال انه ال يستعمل على نطاق واسع نظ ار لوجود القيمة المطلقة التباين واالنح ارف المعياري : يعتبر االنح ارف من اهم مقاييس التشتت واألساليب الرياضية الحديثة لقياس التشتت وأكثر استعماال للتباين األولى العبارة : = ( 2 = 28
29 الفصل الثالث : مقايس التشتت *كلما كان ) ( صغي ار كلما دل ذلك على ان القيم ليست متباعدة عن وسطها الحسابي وبالتالي فهي اقل تشتتا ووسطها الحسابي يمثلها تمثيال جيدا خصائص االنح ارف المعياري : االنحر اف المعياري لقيمة ثابتة يساوي الصفر *تبسيط حساب التباين : متقطع حالة *حالة مستمرة : 29
30 الفصل الثالث : مقايس التشتت يستخدم) ( G في تحديد عدد الوحدات اإلحصائية بالنسبة لتوزيع إحصائي قريب من التماثل حسب الحالت اآلتية حيث نجد أن : ] يحتوي على % من المجتمع ] يحتوي على من %8,27 المجتمع ] يحتوي على من %9, المجتمع ] يحتوي على من %99,7 المجتمع المجال [ المجال [ المجال [ المجال [ العالقة بين االنح ارف المعياري والمجال الربيعي : يضم من التوزيع % اإلحصائي ] [,] [ العالقة بين االنح ارف المعياري واالنح ارف المتوسط المطلق : ثانيا : مقايس التشتت النسبي : معامل اإلختالف : CV هو حامل قسمة االنح ارف المعياري للقيم على متوسطها الحسابي ويعطي بالعالقة :
31 الفصل الثالث : مقايس التشتت كلما كان CV كبير كلما دل ذلك على قوة التشتت بين مفردات الظاهرة ولما كان صغير كلما دل ذلك على تجانس مفردات الظاهرة مالحظة : تستعمل العالقة في حالة التوزيعات اإلحصائية المغلقة من الجهتين: *أما في حالة توزيع مفتوح فإن عبارة معامل االختالف تعطي بالعبارة كما يستعمل معامل االختالف في تحديد التوزيع المثل وبالتالي النوع األفضل : يعطي بالعالقة : 2 المعامل الربيعي النسبي : CQ يستخدم لمقرنة تشتت الوحدات من اإلحصائية التي تقع في منتصف التوزيع بالنسبة % للوسيط مقايس الشكل : التماثل ( التناظر ) : يتم قياس درجة التماثل بواسطة معامل فيشر األول مالحظة : اعتمد فيشر العزم المركزي من الدرجة تساوي إلى الصفر ونميز ثالث حاالت : ألن قيمته في حالة التوزيع التناظري الحالة األولى : =وهي حالة توزيع تناظري حيث :
32 الفصل الثالث : مقايس التشتت الحالة الثانية : <وهي حالة توزيع موجب االلتواء ( مائل إلى اليمين ) حيث : < الحالة الثالثة : وهي حالة توزيع سالب االلتواء ( مائل إلى اليسار ) حيث : مالحظة : في حالة التوزيعات اإلحصائية المفتوحة يستعمل معامل يول كندال الذي يعطي بالعالقة : حيث نجد : حالة توزيع تناظري حالة توزيع غير تناظري ( مائل لليمين ( حالة توزيع غير تناظري ( مائل لليسار ) 2 التفلطح : يتم تحديد مدى تفلطح التوزيعات اإلحصائية مقارنة بتوزيع طبيعي وذلك باستخدام معامل فيشر الثاني الذي يعطي بالعالقة : 2
33 الفصل الثالث : مقايس التشتت حيث : مالحظة : اعتمد فيشر على العزم المركزي من الدرجة ألن المقدار يساوي إلى في حالة توزيع طبيعي تميز ثالث حاالت الحالة األولى : الحالة الثانية : وهي حالة توزيع طبيعي وهي حالة توزيع متطاول ( تشتت ضعيف بالنسبة لمركز التوزيع ) الحالة الثالثة : وهي حالة توزيع مفلطح ( شت تت قوي بالنسبة لمركز التوزيع )
34 الفصل الرابع : االنحدار واالرتباط الخطي يعتبر اإلحصاء مجوعة من الطرق العلمية واألدوات الفنية التي تستخدم في جمع وعرض وتحليل وتفسير البيانات العديدة باستخدام مقاييس النزعة المركزية والتشتت ومقاييس الشكل والتمركز فالهدف بطبيعة الحال هو د ارسة ظاهرة واحدة )متغير واحد ) كأجور العمال نقاط الطلبة الخ أما إذا كانت البيانات العددية تتعلق بسلوك ظاهرتين )متغيرين ) كدخول األف ارد ونفقاتهم الكتلة النقدية والتضخم الخ فالهدف هو ترجمة العالقة التي توجد بين المتغيرين إلى عالقة رياضية لتحديد نوع العالقة الموجودة بين المتغيرين )فردية / عكسية ) وهذا ما يصطلح عليه باالنحدار ولمعرفة قوة العالقة بين المتغيرين وهذا ما يصطلح عليه باالرتباط x : يهتم بقياس العالقة الرياضية بين المتغير y والمتغير التابع / االنحدار I x المستقل أي التنبؤ بقيمة y بمعلومية قيمة العالقة الموجودة بين المتغير التابع والمتغير المستقل )الشكل االنتشار ) يمكن أن نصادف عدة أنواع من أشكال االنتشار كل نوع يحدد طبيعة العالقة بين x وy وبالتالي يحدد طبيعة االنحدار بينهما : 2 ال توجد أي عالقة خطيةبين yوx انحدار خطي سالب غير تام انحدار خطي موجب غير تام انحدار خطي سالب تام انحدار خطي موجب تام
35 وa الفصل الرابع : االنحدار واالرتباط الخطي ناد ار ما تصادفها في الظواهر االقتصادية واالجتماعي انحدار غير خطي بين x و y 2 كثي ار ما نصادفها في الظواهر االقتصادية واالجتماعية طريقة تحديد العالقة الخطية البسيطة : إذا كانت نقاط االنتشار الممثلة في معلم متعامد ومتجانس ليست على استقامة واحدة لكن اتجاهها يمكن تقريبة في معادلة y i, bx i,+a خط المستقيم من الشكل وقعيا ال يمكن الحصول على قيم الفعلية b b و لكل من a لكن يمكننا الحصول على قيم تقديرية ل : و نرمزلها ب â بالتالي قيمة المتغير y التي سنحصل عليها تقديرية قد قد تختلف عن القيم الفعلية )الحقيقية y i و المجودة في الجدول( ولمعرفة قيمة المعامالت و نستخدم طريقة المربعات الصغرى طريقة المربعات الصغرى : يتمثل مبدأ طريقة المربعات الصغرى في تقدير قيمة min و المعامالت شرط أن يكون أصغر ما يمكن اي وكي يتحقق هذا ونعدمها الشرط نشتق و بالنسبة ل : : هي الفرق بين القيم الحقيقية والقيم المقدرة حيث : نأخذ : : أي: S=
36 الفصل الرابع : االنحدار واالرتباط الخطي 2 من 2 نجد : نعوض قيمة a في المعادلة
37 الفصل الرابع : االنحدار واالرتباط الخطي لدنيا مثال: الجدول أدناه يمثل العالقة بين الدخل واالستهالك لمجموعة من االسر , 7 22,,, 2, 7, 27 9, 2, 2,,,,,, 2,, 8, / / األسرة الدخل DA االستهالك DA 8 Σ إذن معادلة انحدار االستهالك على الدخل Dy/ 7
38 الفصل الرابع : االنحدار واالرتباط الخطي y *تبسيط حساب معامل االنحدار Y y تقديرية قيمة D x انحراف تقديرية قيمة M x بإمكاننا تبسيط معامل االنحدار عن طريق تغيير نقطة األصل بمعنى تأخذ و )انح ارف ) وحتى يكون المستقيم D مستقيما أمثال يجب أن يمر وأن تكون مربعات الفروق بين القيم الفعلية )الحقيقية ) والقيم المقدرة )المحسوبة ) أقل ما يمكن : o" هي *معادلة المستقيم Dy/x بالنسبة النقطة " *معادلة المستقيم Dy/x بالنسبة للنقطة "M" هي 8
39 الفصل الرابع : االنحدار واالرتباط الخطي تكون مربعات الفروق بين القيم الفعلية والقيم المقدرة ل y اصغر ما يمكن إذا وفقط إذا كان المشتق األول بالنسبة ل: يساوي الصفر + تابع المثال السابق : y بنفس الطريقة يمكن البرهنة على القيم المقدرة ل :,في حالة انحدار على وذلك بقلب المتغي ارتxو y في المعلم وبذلك نحصل على مايلي : 9
40 الفصل الرابع : االنحدار واالرتباط الخطي من المثال السابق االرتباط الخطي : يهتم بد ارسة قوة العالقة بين yوx عن طريق حساب معامل / II االرتباط معامل االرتباط الخطي : رمزه rالذي يمثل الجذر التربيعي الحاصل جداء معاملي معادلتي خطي االنحدار معادلة انحدار :Dx/y yعلى x المتمثلة :Dx/y معادلة انحدارxعلى y المتمثلة للمستقيم بالتالي يكون حيث r + معامل التحديد : يبين درجة تأثير المتغير المستقل في التغير التابع R 2 = معامل االرتباط وخطوط االنحدار :نميز ثالث حاالت a الحالة األولى : اليوجد أي ارتباط بين الظاهريتين
41 وx الفصل الرابع : االنحدار واالرتباط الخطي b الحالة الثانية : Y D Y/X D X/Y Y r=+ D X/Y X يوجد ارتباط تام )طردي أو عكسي( y بين xو D Y/X c الحالة الثالثة : <r< X يوجد ارتباط جزي طردي او عكسي بين y التباين المشترك بينxو y كما لي : و لدينا قيمة بقسمة البسيط والمقام لكل نجد على و
42 الفصل الرابع : االنحدار واالرتباط الخطي ولدينا أيضا : = r إذن / الخطأ المعياري للتقدير : III يبين هذا المقياس مقدار انح ارف القيم الفعلية للمتغير التابع عن قيمتها المقابلة المقدرة )المحسوبة ) يتعلق األمر بالخطأ المعياري للتقدير على النحدارy xحيث : N: تمثل عدد لمشاهدات : عدد الثوابت ويساوي إلى وبالتالي هما k بالطريقة العادية : 2
43 الفصل الرابع : االنحدار واالرتباط الخطي بالطريقة المختصرة : حيث : مالحظة : كلما اقتربت نقاط االنتشار من خط المستقيم )خط االنحدار ) كلما كانت قيمة الخطأ المعياري للتقدير اصغر ما يمكن ولفهم الخطأ المعياري نقوم بعرض المفاهيم التالية : التباين المفسر (:مجموع مربعات االنحدار ( ويمثل مجموع مربعات انح ارفات القيم المقدرة عن وسطها الحسابي يعني التباين المفسر نسبة x يف y تأثير المتغير التباين غير المفسر : )مجموع مربعات األخطاء ) ويمثل مجموع مربعات انح ارفات قيم المشاهدة عن القدرة ويعطي ب: إذا كانت قيمة التباين غير المفسر هو الكبير هذا يعني أن هناك عوامل أخرى تدخل في تحديد العالقة بين y xو
44 الفصل الرابع : االنحدار واالرتباط الخطي التباين اإلجمالي : )مجموع مربعات االنح ارفات ) وهي مجموع مربعات انح ارفات قيم المشاهدة عن وسطها الحسابي ويعطي ب: التباين اإلجمالي =التباين المفسر +التباين غير المفسر + تباين : N عدد المشاهدات تباين k عدد الثوابت = تباين اختبار معنوية عالقة االنحدار :إلج ارء االختبار نعتمد على مفهوم الخطأ المعياري للتقدير بعد حسابه نختبر المعنوية اإلحصائية لكل من و باستخدام التوزيع )t( حيث t :التوزيعt : الخطأ المعياري للتقدير ل: N: عدد المشاهدات k: عدد الثوابت = نقارن قيمته المحسوبة بقيمة الجدولية بدرجات حرية n حيث إذا كانتt المحسوبة t اقل من t الجدولية تقبل بفرضية العدم : اما إذا كانت المحسوبة أكبر من t
45 الفصل الرابع : االنحدار واالرتباط الخطي الجدولية نرفض فرضية العدم نأخذ بالفرضية المقابلة )أي أنه عالقة انحدار جوهرية بين yوx وبالتالي يمكن استخدام العالقة المقدرة في التنبؤ ) مالحظة : بعد اختبار المعنوية االحصائية ل: يمكن اختبار ايضا معنوية كل العالقات التي وردت تتعلق بانحدار yعلى x عندما يتعلق المر بانحدارxعلى y يجب قلب الترمي ازت معامل التحديد : مثال : دارسة حول الدخل )X( واالدخار) Y ( أدت إلى النتائج التالية : N=, X كتابة معادلة االنحدار Y علىX : حساب التباين المفسر وغير المفسر :
46 الفصل الرابع : االنحدار واالرتباط الخطي =99,(27)(,)(28)=, : x الخطأ المعياري للتقدير y على نالحظ إلى االنح ارف بين القيم الحقيقية والمقدرة صغيرة جدا الخطأ المعياري للتقدير ل: تباين تباين حيث : y معامل التحديد = صغير جدا فهو ال يؤثر في قوة العالقة بين xو من التغي ارت في x ترجع إلى تغي ارت y %9
47 الفصل الرابع : االنحدار واالرتباط الخطي معامل االرتباط: يوجد ارتباط قوي بين الدخل واالدخار :%2 اختبار معنوية تاثير X على Y عند مستوى داللة 2,89 nk=2=8 قيمة tالجدولية عند ودرجة حرية هي المحسوبة الجدولية إذن نرفض فرضية العدم ونأخذ بالفرضية القابلة التي تقر t< t بوجود عالقة تأثير بين الدخل واالدخار 7
48 الفصل الرابع : االنحدار واالرتباط الخطي معامل ارتباط الرتب : يستخدم هذا المقياس عند قياس العالقة بن الظواهر الوصفية والمتغي ارت الكيفية )التي يمكن التمييز بينها بمعرفة )رتبها ) كما يمكن استخدامه في قياس العالقة بين الظواهر التي يمكن قياسها بأحد المقياس المادية لحساب معامل االرتباط للرتب لمجموعة أزواج البيانات تقوم بترتيبها تصاعديا أو تنازليا عوضا بمن قيمتها ويعطي معامل ارتباط الرتب ل: spearman بالعالقة التالية : : تمثل الفروق بين رتب y xو )Y X( عدد أزواج القيم N: كلما كانت الفروق بين رتب القيم التناظرية للمتغيرين كبيرة كلما دل ذلك على صف العالقة بين المتغيرين والعكس صحيح مثال : فيما يلي الدرجات التقديرية ل: طلبة في امتحان مادتي االقتصاد الجزئي واإلحصاء الفروق di y رتب x النتيجة التقديرية رتب y لإلحصاء x النتيجة التقديرية لالقتصاد الجزئي الطالب مربعات الفروق, ,, 8, 8,, 2, 8, 8,, جيدا جدا جيد جيد جدا ممتاز جيد مقبول ضعيف جدا جيد مقبول جيد جدا ممتاز جيد جدا جيد ضعيف 8
49 الفصل الرابع : االنحدار واالرتباط الخطي 2 29, 2, /, 2 / جيد مقبول ضعيف / مقبل مقبول ضعيف جدا / 8 = يوجد عالقة ارتباط قوية بين الدرجات التقديرية لالقتصاد الجزئي واإلحصاء على التوالي 9
المحاضرة الثانية عشر مقاييس التشتت درسنا في المحاضرة السابقة مقاييس النزعة المركزية أو المتوسطات هي مقاييس رقمية تحدد موقع أو مركز التوزيع أو البيانات
المحاضرة الثانية عشر مقاييس التشتت درسنا في المحاضرة السابقة مقاييس النزعة المركزية أو المتوسطات هي مقاييس رقمية تحدد موقع أو مركز التوزيع أو البيانات وهي مهمة في حالة المقارنة بين التوزيعات المختلفة وكان
المزيد من المعلوماتالمحاضرة الرابعة التكامل المحدد Integral( (Definite درسنا في المحاضرة السابقة التكامل غير المحدد التكامل المحدد لها. ألصناف عدة من التوابع وسندرس في ه
المحاضرة الرابعة التكامل المحدد Integrl( (Deinite درسنا في المحاضرة السابقة التكامل غير المحدد التكامل المحدد لها. ألصناف عدة من التوابع وسندرس في هذه المحاضرة مفهوم التكامل المحدد ليكن () تابعا مستمرا
المزيد من المعلوماتاجيبي علي الاسئلة التالية بالكامل:
أساليب توزيع السكان وكثافتهم أوال: التوزيع السكاني Population Distribution التوزيع السكاني هو عبارة عن توزيع البشر األعداد المطلقة على الرقعة المساحية. إن التوزيع الجغ ارفي للسكان هو الجغ ارفية. انعكاس
المزيد من المعلوماتوزارة الرتبية الوطنية امتحان بكالوراي التعليم الثانوي الشعبة: تقين رايضي اختبار يف مادة: الرايضيات اجلمهورية اجلزائرية الدميقراطية الشعبية الديوان الو
وزارة الرتبية الوطنية امتحان بكالوراي التعليم الثانوي الشعبة: تقين رايضي اختبار يف مادة: الرايضيات اجلمهورية اجلزائرية الدميقراطية الشعبية الديوان الوطين لالمتحاانت واملسابقات 710 املدة: دورة: 10 د و 01
المزيد من المعلومات)حل أسئلة اختبار االحصاء( المتغير النوعي هو البيانات التي ال يمكن التعبير عنها بعدد يعني غير رقميهمثل نوع او لون السيارات او الحالة االجتماعية اعزب مت
)حل أسئلة اختبار االحصاء( المتغير النوعي هو البيانات التي ال يمكن التعبير عنها بعدد يعني غير رقميهمثل نوع او لون السيارات او الحالة االجتماعية اعزب متزوج المتغير الكمي المتقطع هو البيانات التي يعبر عنها
المزيد من المعلوماتالفصل الثاني
1 برنامج MINTAB 17 105 احص إعداد أ- ريم المبطي 2 الفصل الثاني ( اختبارات الفروض وفترات الثقة ) لمعالم مجتمع واحد أوال : اختبار المتوسط : لدينا حالتين : نستخدم اختبار Z عندما : N كبيرة و معلومة أو مجهولة
المزيد من المعلومات1 درس :
1 درس : ثانية االمام البخاري التأهيلية المستى: الجدع المشترك العلمي المكن : الهندسة المرجع: في رحاب الرياضيات المادة: الرياضيات الجدادة: رقم 2 71 فبراير االسبع: من الدرس الى 32 فبراير 3172 المستقيم في
المزيد من المعلوماتالحل المفضل لموضوع الر اض ات شعبة تقن ر اض بكالور ا 2015 الحل المفص ل للموضوع األو ل التمر ن األو ل: 1 كتابة و على الشكل األس. إعداد: مصطفاي عبد العز
الحل المفص ل للمضع األ ل التمر ن األ ل: كتابة على الشكل األس k ' cos s cos s e e ب( تع ن ق م العدد الطب ع بح ث كن العدد حق ق ا e e e arg حق ق معناه k منه k عل ه k ' k ح ث e ج( عدد مركب ح ث حساب ط لة العدد
المزيد من المعلومات8 مادة إثرائية وفقا للمنهاج الجديد األساسي الثامن للصف الفصل الدراسي األول إعداد املعلم/ة: أ. مريم مطر أ. جواد أبو سلمية حقوق الطبع حمفوظة لدى املكتبة
8 مادة إثرائية وفقا للمنهاج الجديد الساسي الثامن للصف الفصل الدراسي الول إعداد املعلم/ة:. مريم مطر. جواد و سلمية حقوق الطع حمفوظة لدى املكتة الفلسطينية رقم إيداع )017/614( من وزارة الثقافة تطل من املكتة
المزيد من المعلوماتMicrosoft Word - dériv sc maths.doc
الاشتقاق تطبيقاته دراسة الدال الثانية سلك بكالريا ع ف ع ح أ - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف
المزيد من المعلوماتتحليل الانحــدار الخطي المتعدد
٥٦ تحليل الانحدار الخطي المتعدد Multple Regress Aalss الغرض من التحليل يهتم تحليل الانحدار الخطي المتعدد بدراسة وتحليل أثر عدة متغيرات مستقلة آمي ة عل ى متغي ر ت ابع آمي. نموذج الانحدار الخطي المتعدد بف
المزيد من المعلوماتالتحليل 4 دكتور املادة: هدى الشماط احملاضرة السابعة عشر )األخرية( عنوان احملاضرة :متارين و تطبيقات احملتوى العلمي : أهال بكم أصدقائي, سندرس محاضرتنا األخيرة النهايات و قابلية االشتقاق و إيجاد المشتقات
المزيد من المعلوماتالتعريف بعلم الإحصاء
٨ مقدمة هي أحد وظاي ف علم الا حصاء ويشمل : التقدير الا حصاي ي: Statistical Estimati اختبارات الفروض: Hyptheses Tests وهناك بعض المفاهيم التي يجب التعرف عليها ويكثر استخدمها في مجال : المعلمة :Parameter
المزيد من المعلوماتMicrosoft Word - Sample Weights.doc
ورشة العمل الا قليمية حول تصميم العينات الدوحة ١٥-١٧ ا يار/ مايو ٢٠٠٧ ترجيح العينات ا عداد خميس رد اد مستشار العينات ١ المحاضرة الثامنة ترجيح العينات مقدمة ان عملية ترجيح العينة تعنى عملية اعادة وضع العينة
المزيد من المعلوماتondelum
- www.svt-assilah.com I- حيود الموجة الضوي ية: 1- الانتشار المستقيمي للضوء: ينتشر الضوء في الاوساط الشفافة وفق خطوط مستقيمية وهو ما يسمى مبدأ الانتشار المستقيمي للضوء 2- ظاهرة حيود الضوء : عندما نضيء شقا
المزيد من المعلوماتSlide 1
الفصل 25: الجهد الكهربي فرق الجهد الكهربي والجهد الكهربي فرق الجهد الكهربي لمجال كهربي منتظم -1-2 -3 الجهد الكهربي وطاقة الوضع الكهربية لمجموعة من الشحنات النقطية. Slide 1 Fig 25-CO, p.762 : فرق الجهد
المزيد من المعلوماتصفوت مصطفي حميد ضهير مدرسة الدوحة الثانوية ب أي خطأ طباعي أو إثناء التحويل من صيغة آلخري يرجي إبالغي به والخطأ مني ومن الشيطان أما توفيقي فمن هللا عرف
أي خطأ طباعي أو إثناء التحويل من صيغة آلخري يرجي إبالغي به والخطأ مني ومن الشيطان أما توفيقي فمن هللا عرف المصطلحات التالية: الكميات الفيزيائية القياسية: هي كميات التي يعبر عنها بعدد ووحدة قياس مثل "درجة
المزيد من المعلوماتMicrosoft Word - intégral 2sc exp.doc
الثانية سلك بكالريا علم تجريبية التكامل إلى من. I- تكامل مجال - تعريف ترميز لتكن مجال I عنصرين من. I إذا آانت F G دالتين أصليتين للدالة على I.F()-F()=G()-G() أي أن العدد الحقيقي F()-F() غير مرتبط باختيار
المزيد من المعلوماتتصحيح مادة الرياضيات شعبة الرياضيات التمرين األول : و أي ان تكون النقط بما أن و و و α β α β α β و منه الشعاعان و غير مرتبطان خطيا إذن النقط من نفس الم
تصحيح مادة الرياضيات شعبة الرياضيات التمرين األل : تكن النقط بما أن β β β منه الشعاعان غير مرتبطان خطيا النقط من نفس المستي يعني أجد عددين حقيقين β من بطرح منه بالتعيض في β بتعيض القيمتين في استقامية β
المزيد من المعلوماتSlide 1
Correlation and Regression اإلرتباط واإلنحدار Correlation اإلرتباط - Describes the relationship between two (X & Y) variables يوضح العالقة بين متغيرين )Y, X( - One variable is called independent (X) and
المزيد من المعلوماتFull Mark الفرعين : األدبي والفندقي السياحي الوحدة : األولى النهايات واالتصال إعداد وتصميم األستاذ : خالد الوحش مدرسة أبو علندا الثانوية للبنين
الفرعين : األدبي والفندقي السياحي الوحدة : األولى النهايات واالتصال إعداد وتصميم األستاذ : خالد الوحش مدرسة أبو علندا الثانوية للبنين 0798016746 http://www.youtube.com/uer/moonkaled http://khaledalwahh.wordpre.com/
المزيد من المعلوماتثنائي القطب ثنائي القطب س 4 مادة العلوم الفيزيائية الكهرباء مميزات بعض ثنائيات القطب غير النشيطة الجذع المشترك الفيزياء جزء الكهرباء مميزات بعض ثنائيا
ثنائي القطب ثنائي القطب س 4 الجذع المشترك الفيزياء جزء الكهرباء مميزات بعض ثنائيات القطب غري النشيطة Caractéristiques de quelques dipôles passifs 1- ثنائيات القطب : -1-1 نشاط : صل مربطي كل ثنائي قطب بجهاز
المزيد من المعلوماتالمستوى : 3 ع ت ثانوية محفوظ سعد الفرض االول في للثالثي االول في مادة الرياضيات g(x) = x 3 3x 4 دالة معرفة على R ب g 1/ ادرس تغيرات الدالة g 2/ بين ان
المستوى : 3 ع ت ثانوية محفوظ سعد الفرض االول في للثالثي االول في مادة الرياضيات g() = 3 3 4 دالة معرفة على R ب g / ادرس تغيرات الدالة g 2/ بين ان المعادلة = 0 g() وحيدا تقبل حال α حيث 225 α 2 3/ استنتج
المزيد من المعلوماتسلسلة العمل الذاتي لمادة الریاضیات رقم (01) المستوى: 3 ثانوي علوم تجريبية الا ستاذ :عبداالله بالرقي المتتالیات العددیة 1 )المتتالیة الحسابیة التمرین(
سلسلة العمل الذاتي لمادة الریاضیات رقم (0) المستوى: ثانوي علوم تجريبية الا ستاذ :عبداالله بالرقي المتتالیات العددیة )المتتالیة الحسابیة التمرین( ):( u )متتالية حسابية حيث: =8 u 0 +u و 4 = u +u 5 )ا وجد
المزيد من المعلوماتcorrection des exercices pendule pesant Ter
تصحيح تمارين النواس الوازن تمرين نطبق العلاقة الا ساسية للديناميك على المجموعة S جرد القوى المطبقة على المجموعة : S S وزن المجموعة : P S تا ثير المحور على المجموعة : R M F && بما أن المجموعة قابلة للدوران
المزيد من المعلوماتطبيعة بحته و أرصاد جوية
طبيعة بحته و أرصاد جوية 3 206-2007 الضوء محاضرة 3 قوانين األنعكاس واألنكسار المرايا العدسات التلسكوب الفلكي قوانين األنعكاس و األنكسار عند سقوط شعاع ضوئي علي سطح فاصل بين وسطين ينعكس جزء منة و ينكسر جزء
المزيد من المعلوماتالدرس : 1 مبادئ ف المنطق مكونات المقرر الرسم عناصر التوج هات التربو ة العبارات العمل ات على العبارات المكممات االستدالالت الر اض ة: االستدالل بالخلف ا
الدرس : 1 مبادئ ف المنطق مكونات المقرر الرسم عناصر التوج هات التربو ة العبارات العمل ات على العبارات المكممات االستدالالت الر اض ة: االستدالل بالخلف االستدالل بفصل الحاالت االستدالل بالتكافؤ نبغ تقر ب
المزيد من المعلوماتتوازن جسم صلب خاضع لقوتين)تذكير(.I : عندما يكون جسم صلب في توازن تحت تاثير قوتين فان و )شرط الزم لتوازن مركز القصور G(. للقوتين نفس االتجاه.)شرط الزم
توازن جسم صلب خاضع لقوتين)تذكير( I : عندما يكون جسم صلب في توازن تحت تاثير قوتين فان و )شرط الزم لتوازن مركز القصور G( للقوتين نفس االتجاه )شرط الزم لغياب الدوران( ملحوظة : نعلاام ان اذا كااان = مستقيمية
المزيد من المعلوماتMicrosoft Word - CO_RT10
إعداد : تقديم الشكل أسفله يمثل مضخم يعتمد على ترانزيستور. فھو يحتوي على شبكة من المقاومات تمكن من تقطيب و مكثفات تعمل على ربط المضخم بأخر وذلك بتمرير اإلشارات المتناوبة. R1 100k 1µF 1µF (Load) Rc (charge)
المزيد من المعلوماتالموضوع الثالث تحليل التباين ANOVA) (Two Way الثنائي One Depended نلجأ الى ھذا القانون عند توفر متغيرين يتوقع بينھما تداخل او تفاعل (في تحليل التباين
الموضوع الثالث تحليل التباين ANOVA) (Two Way الثنائي One Depended نلجأ الى ھذا القانون عند توفر متغيرين يتوقع بينھما تداخل او تفاعل (في تحليل التباين االحادي كنا نقارن بين ثالث مجاميع في متغير واحد مثال
المزيد من المعلوماتMicrosoft Word - examen national corexctio
( ) z = 3 ( 3 )i = ( 3 i) z = 3 ( 3 )i= i( 3 ( 3 )i) = iz 3 π ( 3 i) = 8( i) = 8, 6 z π = 8, ( r= 3 ' = 9 9= y'' 6y' 9y = r 6r 9= التمرين الا ل ( نعتر المعادلة التفاضلية لدينا المعادلة المميزة هي إذ ن
المزيد من المعلوماتاختبار تحليل التباين األحادي و اختبار كرودكال والس الالمعلمي يبين السؤال التالي ست مجموعات من دول العالم توضح نسبة التحضر في كل منها حسب الموجود في ال
اختبار تحليل التباين األحادي و اختبار كرودكال والس الالمعلمي يبين السؤال التالي ست مجموعات من دول العالم توضح نسبة التحضر في كل منها حسب الموجود في الملفات الثالثة المرفقة المطلوب : 1 -هل وجد اختالف ب
المزيد من المعلوماتتحليلية الجداء السلمي وتطبيقاته
. المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل
المزيد من المعلوماتI تفريغ مكثف في وشيعة. 1 التركيب التجريبي: L = 40mH وشيعة معامل تحريضها C = 1μF مكثف سعته E = 6V العدة: مولد قوته الكهرمحركة ومقاومتها الداخلية r = 10
I تفريغ مكثف في وشيعة. التركيب التجريبي: = 4H وشيعة معامل تحريضها = μf مكثف سعته = 6V العدة: مولد قوته الكهرمحركة ومقاومتها الداخلية r = Ω وموصل أومي مقاومته.R = 3Ω يشحن المكثف عند وضع قاطع التيار K في
المزيد من المعلومات19_MathsPure_GeneralDiploma_1.2_2015.indd
تنبيه: األسئلة يف ( 15 ) صفحة. امتحان دبلوم التعليم العام للعام الدرايس 1436/1435 ه - 2014 2015 / م زمن اإلجابة: ثالث ساعات. اإلجابة يف الورقة نفسها. تعليامت وضوابط التقدم لالمتحان: الحضور إىل اللجنة قبل
المزيد من المعلوماتالمستوى : 3 ع ت ثانوية محفوظ سعد الفرض االول في للثالثي االول في مادة الرياضيات g(x) = x 3 3x 4 دالة معرفة على R ب g 1/ ادرس تغيرات الدالة g 2/ بين ان
المستوى : 3 ع ت ثانوية محفوظ سعد الفرض االول في للثالثي االول في مادة الرياضيات g() = 3 3 4 دالة معرفة على R ب g / ادرس تغيرات الدالة g 2/ بين ان المعادلة = 0 g() وحيدا تقبل حال α حيث 225 α 2 3/ استنتج
المزيد من المعلوماتالمملكة العربية السعودية م ق س ..../1998
SFDA.FD 2483 /2018 الدهون )األحماض الدهنية( المتحولة Trans Fatty Acids ICS : 67.040 تقديم الهيئة جهة مستقلة الغرض األساسي لها هو القيام بتنظيم وم ارقبة الغذاء والدواء واألجهزة الطبية ومن مهامها وضع اللوائح
المزيد من المعلوماتالشريحة 1
2 األشكال الثالثية األبعاد 4 الف ص ل السادس 5 6 ن 2 : املئ الجدول بالرقم المناسب عدد أضالع القاعدة 4 ن 3 8 عدد أحرف المجس م 6 كانت إذا قاعدة الهرم مثلثة الشكل ذ فكم عدد أضالعها كم حرف ا كانت إذا للهرم
المزيد من المعلوماتPowerPoint Presentation
مشروع التسويق ولوجيستيات االعمال الزراعية المتقدمة التحليل المالي كيبف تحدد سعر التكلفة والسعر النهائي الى أي مدى يعكس السعر الجودة 50 قرش للكيلو جنيه للكيلو هل التكاليف هي المكون الوحيد للسعر 3 مالذي
المزيد من المعلوماتammarimaths collège
1/5 مدخل الى الدال : 1) الدال الحددية: (2 تمثيلها المبياني مستقيم يمر من x) )=ax تعرفنا في السنات الماضية على الدال الخطية هي الدال التي تكتب على شكل تمثيلها المبياني مستقيم ل b+ x) )=ax أصل المعلم تعرفنا
المزيد من المعلوماتالدوال في اكسل الدوال: هي صيغ معرفة مسبقا تقوم بإجراء عمليات حسابية بإستخدم قيم محددة ووسائط مسماة في ترتيب بنية معينة بناء الدالة: إغالق. يبدأ بناء ا
الدوال في اكسل الدوال: هي صيغ معرفة مسبقا تقوم بإجراء عمليات حسابية بإستخدم قيم محددة ووسائط مسماة في ترتيب بنية معينة بناء الدالة: إغالق. يبدأ بناء الدالة بعالمة المساواة )=( ثم اسم الدالة وقوس فتح ويتم
المزيد من المعلوماتMicrosoft Word - QA-Reliability
اختبار صلاحية الاستبانات Questionnaires Reliability Analysis لتقويم ا دوات جمع البيانات الميدانية (الاستبانات) باستخدام قياس ليكرت لدرجة الموافقة Likert Scale من نوعان هناك الاختبارات التي لها تخضع ا ن
المزيد من المعلوماتمكثف الثالثة الوحدة البوابات املنطقية 1 هاتف : مدارس األكاد م ة العرب ة الحد ثة إعداد المعلم أحمد الصالح
مكثف الثالثة الوحدة البوابات املنطقية هاتف : 798226 النظ ري الج زء و الثاني األ ول للد رسين وضح ان قصىد ت ا يهي : انرعثير انعالئقي ج هح خثريح ذكى قي رها إيا صىاب )( و إيا خطأ )( ان عايم ان طقي راتط يسرخذو
المزيد من المعلوماتالمعادالت التف اضلية 2 احملاضرة :الثانية عشر املادة: ملك مارديين عنىان احملاضرة :املعادالت الحفاضلية اجلزئية دكحىرة احملتوى العلمي : 1- تتمة منشأ المعادالت التفاضلية الجزئية 2- المغلف 3- الحل الشاذ للمغلف
المزيد من المعلوماتبسم هللا الرحمن الرحيم المادة: مقدمة في بحوث العمليات )100 بحث ) الفصل الدراسي األول للعام الدراسي 1439/1438 ه االختبار الفصلي الثاني اسم الطالب: الرق
بسم هللا الرحمن الرحيم المادة: مقدمة في بحوث العمليات ) بحث ) الفصل الدراسي األول للعام الدراسي 9/8 ه االختبار الفصلي الثاني اسم الطالب: الرقم الجامعي: أستاذ المقرر: الدرجة: أكتب اختيارك لرمز اإلجابة الصحيحة
المزيد من المعلوماتوزارة التربية والتعليم مجلس االمارات التعليمي 1 النطاق 3 مدرسة رأس الخيمة للتعليم الثانوي Ministry of Education Emirates Educational Council 1 Cluster
أوال : أجب عن األسئلة التالية )1 يسحب شخص مكعب ا خشبي ا كتلته ( )8.75kg على أرض إسمنتية نحو اليمين بوساطة حبل يميل فوق األفقي بزاوية ( )27 انظر الشكل جانب ا فإذا كانت قوة الشد في الحبل ( ) 1.00 102 N وعانى
المزيد من المعلومات) NSB-AppStudio برمجة تطبيقات األجهزة الذكية باستخدام برنامج ( ) برمجة تطبيقات األجهزة الذكية باستخدام برنامج ( NSB-AppStudio الدرس األول ) 1 ( الدرس
) NSB-AppStudio ) 1 ( أهداف الدرس : بعد انتهاء هذا الدرس ستكون الطالبة قادرة على أن : )1 توضح مميزات برنامج ( NSB-AppStudio ) 2( تعدد لغات البرمجة المستخدمة في برنامج ( NSB-AppStudio ) 3( تذكر خطوات كتابة
المزيد من المعلوماتMicrosoft Word - new.doc
الدرس الاول فى الماتلاب عنوان الدرس : ما هو الماتلاب الماتلاب هو لغة ذات مستوى عالى للحسابات والبرمجة و تمتاز بوجود برنامج يسهل عملية التعامل مع هذه اللغة. ويشمل البرنامج على: الحسابات الرياضية عمل الالجوريثمات
المزيد من المعلوماتالكيمياء : استعمالات حمض البنزويك الجزء الاول : تحديد النسبة المائوية لحمض البنزويك الخالص C 6 H 5 COOH (aq) + H 2 O (l) C 6 H 5 COO (aq) pk A = logk
الكيمياء استعمالات حمض البنزويك الجزء الاول تحديد النسبة المائوية لحمض البنزويك الخالص C 6 H 5 COOH (aq) + H O (l) C 6 H 5 COO (aq) pk A = logk A pk A = log(6, 31. 10 5 ) = 4, 0 1 -معادلة التفاعل بين حمض
المزيد من المعلومات( اختبارات الفروق لعينتين مستقلتين Samples) 2) Independent مان- ويتني( U (Mann-Whitney ب( نحتاج الى ھذا القانون الغراض المقارنة بين مجموعتين او عينتين
( اختارات الفروق لعينتين مستقلتين Samples) 2) Independent مان ويتني( U (MannWhitney ( نحتاج الى ھذا القانون الغراض المقارنة ين مجموعتين او عينتين مستقلتين مثال المقارنة ين عينة للذكور م ع عينة لالناث او
المزيد من المعلومات5-
قسم الفيزياءوالفلك اسم الطالب: ممتاز الرقم الجامعي: 0000 رقم الشعبة: إجابة االختبار الفصيل ملقرر 000000 فيز ( الفصل الدرايس الصيفي 44/43 ه ) مع تمنياتي للجميع التوفيق والنجاح A 3î, B 4ĵ, C -ĵ A B - C (Ax
المزيد من المعلوماتالــــــرقم الــــقياسي لتكاليف اإلنــــشاءات مــشاريع األبـــــــراج ﺍﻟـــﺮﺑــﻊ ﺍﻟﺮﺍﺑﻊ 2017 )سنة األساس (2013 ﺗﺎﺭﻳﺦ ﺍﻹﺻﺪﺍﺭ : ﻣﺎﺭﺱ 2018 الـرقم الــــق
الــــــرقم الــــقياسي لتكاليف اإلنــــشاءات مــشاريع األبـــــــراج ﺍﻟـــﺮﺑــﻊ ﺍﻟﺮﺍﺑﻊ )سنة األساس (2013 ﺗﺎﺭﻳﺦ ﺍﻹﺻﺪﺍﺭ : ﻣﺎﺭﺱ 2018 الـرقم الــــقياسي لتكاليف اإلنشاءات 1 مفصال حسب : مجموعات المواد والخدمات
المزيد من المعلومات19_MathsPure_GeneralDiploma_1.2_2016.indd
تنبيه: األسئلة يف )11( صفحة. امتحان دبلوم التعليم العام للعام الدرايس 1437/1436 ه - 2015 2016 / م زمن اإلجابة: ثالث ساعات. اإلجابة يف الورقة نفسها. تعليامت وضوابط التقدم لالمتحان: الحضور إىل اللجنة قبل
المزيد من المعلوماتالــــــرقم الــــقياسي لتكاليف اإلنــــشاءات مــشاريع األبـــــــراج ﺍﻟـــﺮﺑــﻊ ﺍﻟﺜﺎﻟﺚ 2017 )سنة األساس (2013 ﺗﺎﺭﻳﺦ ﺍﻹﺻﺪﺍﺭ : ﺩﻳﺴﻤﺒﺮ 2017 الـرقم الـــ
الــــــرقم الــــقياسي لتكاليف اإلنــــشاءات مــشاريع األبـــــــراج ﺍﻟـــﺮﺑــﻊ ﺍﻟﺜﺎﻟﺚ 2017 )سنة األساس (2013 ﺗﺎﺭﻳﺦ ﺍﻹﺻﺪﺍﺭ : ﺩﻳﺴﻤﺒﺮ 2017 الـرقم الــــقياسي لتكاليف اإلنشاءات 1 مفصال حسب : مجموعات المواد
المزيد من المعلوماتABU DHABI EDUCATION COUNCIL Abu Dhabi Education Zone AL Mountaha Secondary School g-12 science section Mathematics Student Name:.. Section: How Long i
ABU DHABI EDUCATION COUNCIL Abu Dhabi Education Zone AL Mountaha Secondary School g-12 science section Mathematics Student Name:.. Section: How Long is the Average Chord of a Circle?/ 2009-2010 Second
المزيد من المعلومات10) série d'exercices chute libre d'un corps solide
سلسلة تمارين حول السقوط الحر لجسم صلب ) تمرين رقم 7 الصفحة 9 الكتاب المدرسي فضاء الفيزياء السقوط الحر الرأسي يسقط جسم آروي من سطح عمارة وفق حرآة سقوط حر رأسي. - ما شكل مسار مرآز قصور الجسم - أعط القوى
المزيد من المعلوماتMicrosoft Word - BacCorr2008SVT_WEB.doc
א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol ( التقدم حالة المجموعة
المزيد من المعلوماتجامعة العقيد الحاج لخضر - باتنة - 1 كلية العلوم االقتصادية والتجارية وعلوم التسيير قسم التعليم األساسي مادة II دروس وتطبيقات الرياضيات لطلبة السنة األ
جامعة العقيد الحاج لخضر - باتنة - 1 كلية العلوم االقتصادية والتجارية وعلوم التسيير قسم التعليم األساسي مادة II دروس وتطبيقات الرياضيات لطلبة السنة األولى الثاني السداسي إعداد أساتذة المادة الفهرس العام
المزيد من المعلوماتدرس 02
ع دI و تحولاتها المادة المجال أفراد هندسة 02 الوحدة الا نواع الآيمياي ية بعض م ع ت ج المستوى 1 02 رقم الدرس ( المادة و التفاعلات الآيمياي ية بنية ) أفراد بعض الا نواع الآيمياي ية هندسة رقم 2 الوحدة المفاهيم
المزيد من المعلوماتالرقابة الداخلية والرقابة الخارجية
الرقابة الداخلية - التدقيق الداخلي الرقابة الخارجية القاضي أفرام الخوري الرقابة الداخلية - التدقيق الداخلي والرقابة الخارجية الفقرة االولى : المقاييس العامة ألي نظام رقابي 1 هدف الرقابة : الرقابة على الوسيلة
المزيد من المعلوماتص)أ( المملكة العرب ة السعود ة وزارة التعل م اإلدارة العامة للتعل م بمحافظة جدة الب ان النموذج ة ( تعل م عام ) انفصم اندراسي األول انفترة انثانثت العام
ص)أ( المملكة العرب ة السعود ة وزارة التعل م اإلدارة العامة للتعل م بمحافظة جدة الب ان النموذج ة ( تعل م عام ) انفصم اندراسي األول انفترة انثانثت العام الدراس - 8 المعلمة المرحلة الصف المادة وفاء المالكي
المزيد من المعلوماتالأول في السي شارب((c#للمبتدائين
شباب التنميه والبداع : امحد ياسني شلش ذ د الدرس األول: فتح فيوجل ستوديو وشرحه 2012 1 -هذا هوه البرنامج نقوم بفتحه نسخه 2012 فيوجل استوديو new )نضغط علي - 2 اي مشروع جديد( project المتبنأ هذه لغه فيوجل
المزيد من المعلوماتسلسلة تمارين حول القوة المطبقة من طرف جسم نابض
سلسلة تمارين حول القوة المطبقة من طرف جسم نابض- دافعة أرخميد س F 4N التمرين رقم 1 ص 58 من الكتاب المدرسي مرشدي في الفيزياء: يخضع جسم صلب S آتلته مهملة لتا ثيرين ميكانيكيين من طرف ديناموميترين D 1 و D فيشير
المزيد من المعلوماتعرض تقديمي في PowerPoint
Dr./ Ahmed Mohamed Rabie Sayed 1 2 صندوق االدوات صندوق االدوات Tools Box يحتوى اظهار وإخفاء Tools Box من قائمة على االدوات Window الرئيسية الالزمة النشاء واختيار.Tools وتعديل التصميم. ويمكن 3 Move Tool
المزيد من المعلوماتThinking Skills In Geology " 99 سؤال" مهارات تفكري عليا ومتطورة يف اجليولوجيا الصف الثاني عشر العلمي الفصل الدراسي الثاني للعام إعداد الدكت
Thinking Skills In Geology " 99 سؤال" مهارات تفكري عليا ومتطورة يف اجليولوجيا الصف الثاني عشر العلمي الفصل الدراسي الثاني للعام -2102 2102 إعداد الدكتور بسام حممد النعيمي منطقة رأس الخيمة التعليمية مدرسة
المزيد من المعلومات37 2- أسئلة المباشرة المحاضرة االولى {3.4.5.x.w} =B والمجموعة الكلية = { x.y.w.z }فأوجد مايلي :- B. وليست في A
المحاضرة االولى {...x.w} B والمجموعة الكلية {...x.y.w.z }فأوجد مايلي :- B. وليست في A يسمى بالفرق وهو مجموعة كل العناصر الموجودة A-B y} A{... x. و اذا كانت -: A-B - {...x.y.w} {x.y.w} {..y} A B تقاطع المجموعتين
المزيد من المعلوماتوضح أهمية وصف مظاهر التكوينات الجديدة فى التربة فى مجال مورفولوجيا الأراضى
كلية الزراعة- قسم األراضى والمياه أمتحان الفصل الدراسى االول للعام الجامعى /1012 1015 تاريخ االمتحان : 15 1012 / 2 / شعبة / األراضى الفرقة / الرابعة الزمن / ساعتين أسم المادة/ االستشعار عن بعد فى الزراعة
المزيد من المعلوماتMicrosoft Word doc
تمديدات الزمرة (n C بمساعدة الزمرة دانا صالح و عبد اللطيف هنانو قسم الرياضيات كلية العلوم جامعة دمشق سورية تاريخ الا يداع 2/7/27 قبل للنشر في 2//29 المل خص ( n C C C C.. = تبحث هذه الورقة العلمية تمديدات
المزيد من المعلوماتالسؤال الأول:
الدولي المجمع العري للمحاسين القانونيين 4102 امتحان محاس اإلجاات المقترحة ألسئلة دولي عري قانوني معتمد /)IACPA( : الثانية القسم األول الورقة : المادة المحاسة عدد األجوة : 5-1 - 41] السؤال األول: ضع دائرة
المزيد من المعلوماتMicrosoft Word - e.doc
حرارة التفاعل الكيمياي ي - قانون حفظ الطاقة : (Exothermic) (Endothermic) ا نواع الطاقة طاقة الحركة طاقة الوضع الطاقة الحرارية - التفاعلات المنتجة (الطاردة) للحرارة - التفاعلات الماصة (المستهلكة) للحرارة
المزيد من المعلوماتPrésentation PowerPoint
P. Benameur nabil : قياس املرونات الفصل 2 1.مفهوم املرونة 2. مرونة الطلب السعرية والعوامل املؤثرة 3. مرونة الطلب الدخلية 4. املرونة التقاطعية للطلب 5. مرونة العرض السعرية والعوامل املؤثرة فيها فيها. لفظ
المزيد من المعلومات212 phys.
فيز 211 الميكانيكا 1 Phys 211 Mechanics 1 المحاضرة الثالثة Lecture 3 Motion i n Two And Three Dimentions المراجع لهذه المحاضرة Book: Fundamentals of physics By Jearl walker P 58-72 + P 75 But 4-8 and proof
المزيد من المعلوماتMicrosoft Word - Suites_Numériques_1_sm.doc
الا ستاذ الا لى علم رياضية المتتاليات العددية - I عمميات 4 ; 8 ; ; 6 ; ; ; أمثلة تمهيدية مثال أتمم بشكل منطقي ما يلي نقترح تخصيص رمز لكل من هذه الا عداد لهذا نضع u 4 ; u 8 ; u ; u 6 ; 4 5 فيكن لدينا I
المزيد من المعلوماتles ondes mecaniques progressives cours
الموجات الميكانيكية المتوالية Les ondes mécaniques progressives I الموجات الميكانيكية المتوالية 1 الموجة الميكانيكية النشاط التجريبي 1 نعرض التجارب التالية بواسطة فيديو أو القيام بها داخل القسم في حالة
المزيد من المعلوماتأمثلة محلولة على الفصل الثانى السلوك الش ارئي للمستهلك مثال )1(: الجدول التالى يوضح لهذا المستهلك ومثل ذلك بيانيا المنفعة الكلية إلستهالك البرتقال لمس
أمثلة محلولة على الفصل الثانى السلوك الش ارئي للمستهلك مثال )(: الجدول التالى يوضح لهذا المستهلك ومثل ذلك بيانيا إلستهالك البرتقال لمستهلك ما احسب الحدية الستهالك البرتقال حبات البرتقال و الحدية إلستهالك
المزيد من المعلوماتبعض تطبيقات توازن جسم صلب خاضع لقوتين Quelques applications de l équilibre d un solide soumis à deux forces األدهاا *التذكير بشرطي توازن جسم صلب خاضع
بعض تطبيقات توازن جسم صلب خاضع لقوتين Quelques applications de l équilibre d un solide soumis à deux forces األدهاا *التذكير بشرطي توازن جسم صلب خاضع لقوتين. *معرفة و تطبيق العالقة =T. K *تعريف دافعة أرخمياس
المزيد من المعلوماتمختبر البرمجة والتحليل العددي قسم علوم الجو جمل التحكم والشرط والتكرار المرحلة الثانية PROGRAM CONTROL, CONDITION AND LOOP STATEMENTS الجمل الشرطية :-
جمل التحكم والشرط والتكرار PROGRAM CONTROL, CONDITION AND LOOP STATEMENTS الجمل الشرطية :- تقسم جمل الشرط الى نوعين وهي :- -1 جملة اذا الشرطية ) statement ( if -2 جملة التوزيع ) case ( switch -1 جملة اذا
المزيد من المعلوماتجامعة جدارا Jadara University كلية: الدراسات التربوية
Jadara University جامعة جدا ار College: Educational Studies كمية: الد ارسات التربوية اثر حجم العينة وأسموب اختيارها في الخصائص السيكومترية لممقاييس النفسية The Effect Of Sample Size And It's Selection
المزيد من المعلوماتserie
الدعم و التقوية المادة : الفيزياي ية الاولى باك ع ر الموضوع: الدوران و الشغل المستوى : تمرين- ( شعاعها 55mm و بواسطة سير نربط هذه على مرود محرك آهرباي ي نثبت بكرة ).ω ad زاوية دوران مرود المحرك. 00mm شعاعها
المزيد من المعلوماتاململكة العربية السعودية وزارة التعليم العالي جامعة اجملمعة عماده خدمه اجملتمع كليه الرتبية بالزلفي دبلوم التوجيه واالرشاد الطالبي ملخص منوذج توصيف مق
اململكة العربية السعودية وزارة التعليم العالي جامعة اجملمعة عماده خدمه اجملتمع كليه الرتبية بالزلفي دبلوم التوجيه واالرشاد الطالبي ملخص منوذج توصيف مقرر )نظريات التعلم ) 435/434 ه منوذج توصيف مقرر دراسي
المزيد من المعلوماتCircuit RLC Série/ المتوالية RLC الدارة
ircui RL Série/ المتوالية RL الدارة االطار المرجعي: الدارة RL المتوالية الموارد )معارف مهارات( معرفة األنظمة الثالثة للتذبذبات الدورية وشبه الدورية و الالدورية. تعرف وتمثيل منحنيات تغيرات التوتر بين مربطي
المزيد من المعلوماتاختبار تحليل التباين يستخدم اختبار تحميل التباين الختبار الفروق بين متوسطات ثالث عينات فأكثر ويشترط الستخدامه بأن تكون البيانات تتبع التوزيع الطبيعي.
اختبار تحليل التباين يستخدم اختبار تحميل التباين الختبار الفروق بين متوسطات ثالث عينات فأكثر ويشترط الستخدامه بأن تكون البيانات تتبع التوزيع الطبيعي. يستخدم في حالة وجود متغير تابع وله متغير مستقل ولكن
المزيد من المعلوماتمقدمة عن الاوناش
مقدمة عن االوناش مهندس اعداد / ناصر محمود احمد االوناش Cranes هي نوع من المعدات تستخدم لرفع وخفض ونقل االحمال الكبيرة. المبادئ الميكانيكية االساسية لالوناش:- قدرة الونش علي رفع الحمولة. 1. عدم سقوط الونش
المزيد من المعلوماتالباب الثالث منهج البحث Yunita Dewi, 2017 PENGARUH GAYA BELAJAR TERHADAP HASIL BELAJAR BAHASA ARAB Universitas Pendidikan Indonesia repository.upi.edu
الباب الثالث منهج البحث أ. طريقة البحث وتصميمه من المعروف أن موضوع هذا البحث هو تأثير أسلوب التعلم إلى حواصل تعلم اللغة العربية. إضافة إلى ذلك تستخدم الباحثة المدخل إلى البحث الكمي من حيث المعلومات مأخوذة
المزيد من المعلوماتالشريحة 1
1 4 > < فيما سبق درست حل معادالت خطية باجلمع والطرح. اآلن.. أحل متباينات خطية باجلمع أحل متباينات خطية بالطرح المفردات الصفة املميزة للمجموعة. . لماذا تبين المعلومات الواردة في الجدول أدناه أن المخصصات
المزيد من المعلوماتيونيو 17 يونيو 18 ديسمبر ديسمبر أغسطس 14 أغسطس 15 أغسطس 16 أغسطس 17 أغسطس البنك المركزي المصري التحليل الشهري للتضخم معدل التضخم: العام وا
ديسمبر ديسمبر أغسطس 1 أغسطس 15 أغسطس أغسطس أغسطس معدل التضخم: العام واألساسي ديسمبر 2 نجحت السياسة النقدية التي اتبعها البنك المركزي في السيطرة على الضغوط التضخمية حيث انخفض المعدل السنوي للتضخم ليسجل
المزيد من المعلوماتدائرة التسجيل والقبول فتح باب تقديم طلبات االلتحاق للفصل األول 2018/2017 " درجة البكالوريوس" من العام الدراسي جامعة بيرزيت تعلن 2018/2017 يعادلها ابتد
دائرة التسجيل والقبول فتح باب تقديم طلبات االلتحاق للفصل األول 2018/2017 " درجة البكالوريوس" من العام الدراسي جامعة بيرزيت تعلن 2018/2017 يعادلها ابتداء من عن فتح باب تقديم طلبات االلتحاق بإمكان الطلبة
المزيد من المعلوماتdoc11
الجزء األول من الكتاب المدرسي (3 ع ت 3 ت ر ر ( التطورات الزمنية الرتيبة تطور جملة كيميائية نحو حالة التوازن الوحدة 4 DAHEL MT Lycée benalioui salah SETIF ***********************************************************
المزيد من المعلومات2.3 ألعاب احتامل ستلعبون يف هذه الفع الي ة ألعاب احتامل بأزواج وستحل لونها. مالحظة: يجب أن يكون معكم يف هذه الفع الي ة زوج من مكع بات الل عب )حجارة ال
. ألعاب احتامل ستلعبون يف هذه الفع الي ة ألعاب احتامل بأزواج وستحل لونها. مالحظة: يجب أن يكون معكم يف هذه الفع الي ة زوج من مكع بات الل عب )حجارة الن د(. ميكنكم أيض ا أن تتوج هوا إىل مواقع تقوم مبحاكاة
المزيد من المعلوماتاملستوى : الثالثة ثانوي إعدادي من إعداد األستاذ : املهدي عنيس : : مترين 1) لنحل جربيا النظمات اآلتية : أ) - باستعمال طريقة التعويض : 3x y 5 (1) */ حل
املستى الثالثة ثاني إعدادي من إعداد األستاذ املهدي عنيس مترين 1) لنحل جربيا النظمات اآلتية أ) - باستعمال طريقة التعيض 3x 5 (1) */ حل النظمة x59 () /- لنحدد بداللة x يف املعادلة (1) 5 3 x يعين أن 3x5 x
المزيد من المعلوماتتأثير اتفاقيتي الشراكة عبر المحيط الهادئ والشراكة في التجارة والاستثمار عبر الأطلسي على الدول العربية
التحديات والفرص التفاقيات التجارة العمالقة على االقتصاديات العربية: اتفاقيتي الشراكة عبر المحيط الهادئ والشراكة في التجارة واالستثمار عبر األطلسي اتفاق الشراكة عبر المحيط الهادئ) TPP ) اتفاقية الشراكة
المزيد من المعلوماتMicrosoft Word - tarkiba_kahroub_n1
-1 تمهيد تضم جل الا جهزة التي تعمل بالطاقة الكهرباي ية دارة آهرباي ية بسيطة أو دارة معقدة. لنلاحظ مثلا رشما آهرباي يا لدارة بسيطة لمصباح الجيب 1.1 تعريف و هدف الرشم الكهرباي ي الرشم الكهرباي ي هو تمثيل
المزيد من المعلوماتالسؤال األول: ضع عالمة صح أمام العبارة الصحيحة وعالمة خطأ أمام العبارة الخاطئة: مؤشر االنتاجية هو النسبة المئوية التي تحصل عليها من خالل قسمة الفرق بي
السؤال األول: ضع عالمة صح أمام العبارة الصحيحة وعالمة خطأ أمام العبارة الخاطئة: مؤشر االنتاجية هو النسبة المئوية التي تحصل عليها من خالل قسمة الفرق بين انتاجية فترة معينة وإنتاجية فترة األساس علي انتاجية
المزيد من المعلوماتجامعة الملك سعود المقر: الرياض - طالب كلية العلوم وكالة الكلية للشؤون األكاديمية الخطط الدراسية الخطة الدراسية لبرنامج الرياضيات المالية واإلكتوارية ا
قسم الرياضيات الخطة الدراسية لبرنامج الرياضيات اإلكتوارية والمالية 1438 ه 2016 م 7/1 140 ريض 150 صحة 140 نجم 140 نهج )محا+ تما +عمل( 140 تقن 140 علم 150 ريض 150 نجم 101 ريد المستوى الثاني )السنة التحضيرية(
المزيد من المعلوماتاسم المفعول
اسم المفعول اسم المفعول اسم ي شتق من الفعل المتعدي المبني للمجهول المتعدي وهي تدل على وصف من يقع عليه الفعل. يصاغ اسم المفعول على الن حو التالي : 1 الفعل الثالثي : على وزن م ف ع ول مثل: ك ت ب : م ك ت وب
المزيد من المعلوماتمجلة جامعة تشرين للبحوث والدراسات العلمية _ سلسلة العلوم االقتصادية والقانونية المجلد )63( العدد )5( 2014 Tishreen University Journal for Research and
مجلة جامعة تشرين للبحوث والدراسات العلمية _ سلسلة العلوم االقتصادية والقانونية المجلد )63( العدد )5( 014 Tishreen University Journal for Research and Scientific Studies -Economic and Legal Sciences Series
المزيد من المعلوماتاردوينو – الدرس الثامن – تغيير درجة الالوان لـ RGB LED
اردوينو الدرس الثامن تغيير درجة الالوان ل RGB LED في هذا الدرس ستقوم بتطبيق ماتعلمته بالدرس السابع والرابع وذلك لاستخدام الازرار في تغيير درجة الالوان في RGB Led القطع المطلوبة لاتمام هذا الدرس عليك توفير
المزيد من المعلوماتنموذج توصيف المقرر الدراسي
المركز الوطني للتقويم واالعتماد األكاديمي National Center for Academic Accreditation and Evaluation الدراسي المقرر توصيف اسم المقرر: رمز المقرر: في : أساسيات االحتماالت واإلحصاء ) 0 احص( 0 احص نموذج توصيف
المزيد من المعلومات